In the metric theory of Diophantine approximations, one of the main problems leading to exact characteristics in the classifications of Mahler and Koksma is to estimate the Lebesgue measure of the points x ∈ B ⊂ I from the interval I such as the inequality | P (x) | < Q-w, w > n, Q >1 for the polynomials P(x) ∈ Z[x], deg P ≤ n, H(P) ≤Q is satisfied. The methods of obtaining estimates are different at different intervals of w change. In this article, at w > n +1 we get the estimate µ B< c1(n) Q – (w-1/n). The best estimate to date was c2(n) Q –(w- n/n).
The article is devoted to the latest results in metric theory of Diophantine approximation. One of the first major result in area of number theory was a theorem by academician Jonas Kubilius. This paper is dedicated to centenary of his birth. Over the last 70 years, the area of Diophantine approximation yielded a number of significant results by great mathematicians, including Fields prize winners Alan Baker and Grigori Margulis. In 1964 academician of the Academy of Sciences of BSSR Vladimir Sprindžuk, who was a pupil of academician J. Kubilius, solved the well-known Mahler’s conjecture on the measure of the set of S-numbers under Mahler’s classification, thus becoming the founder of the Belarusian academic school of number theory in 1962.
The problem of finding the Lebesgue measure 𝛍 of the set B1 of the coverings of the solutions of the inequality, ⎸Px⎹ <Q−w, w>n , Q ∈ N and Q >1, in integer polynomials P (x) of degree, which doesn’t exceed n and the height H (P) ≤ Q , is one of the main problems in the metric theory of the Diophantine approximation. We have obtained a new bound 𝛍B1 <c(n)Q−w+n, n<w<n+1, that is the most powerful to date. Even an ineffective version of this bound allowed V. G. Sprindzuk to solve Mahler’s famous problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.