Opioid peptides are involved in various essential physiological processes, most notably nociception. Dipeptidyl peptidase III (DPP III) is one of the most important enkephalin-degrading enzymes associated with the mammalian pain modulatory system. Here we describe the X-ray structures of human DPP III and its complex with the opioid peptide tynorphin, which rationalize the enzyme's substrate specificity and reveal an exceptionally large domain motion upon ligand binding. Microcalorimetric analyses point at an entropy-dominated process, with the release of water molecules from the binding cleft ("entropy reservoir") as the major thermodynamic driving force. Our results provide the basis for the design of specific inhibitors that enable the elucidation of the exact role of DPP III and the exploration of its potential as a target of pain intervention strategies.isothermal titration calorimetry | metallopeptidase | peptide binding | X-ray crystallography T he endogenous opioid system, composed of opioid peptides and their receptors, modulates a large number of physiological processes, such as endocrine and immune function, gastrointestinal motility, respiration, reward, stress, complex social behavior (e.g., sexual activity), vulnerability to drug addiction, and most notably the procession and transmission of pain stimuli (nociception) (1, 2). Two major types of endogenous opioid peptides are those containing enkephalin sequences at the N terminus (TyrGly-Gly-Phe-Met/Leu) (3) and, more recently identified, endomorphins 1 and 2 (Tyr-Pro-Trp/Phe-Phe-NH 2 ) (4, 5). Knowledge and control over synthesis and degradation pathways of this class of molecules is prerequisite for the development of new therapies that target pertinent physiological processes.Dipeptidyl peptidase III (DPP III), also known as enkephalinase B, is an enkephalin-degrading enzyme that cleaves dipeptides sequentially from the N termini of substrates (6). All DPP IIIs described thus far contain the unique zinc-binding motif HEXXGH characteristic of metallopeptidase family M49 (7). Enzymes from several human and animal tissues, as well as from lower eukaryotes, were purified and biochemically characterized (8, 9). DPP III is largely found as a cytosolic protein, although membrane association in rat brain and Drosophila melanogaster has been described (10, 11). The 3D structure of the yeast ortholog has recently been determined, revealing a unique protein fold with two lobes forming a wide-open substrate-binding cleft (12). The lack of structural information on peptide complexes, however, left the question of substrate specificity largely unanswered.DPP III purified from monkey brain microsomes is strongly inhibited by the neuropeptide spinorphin (Leu-Val-Val-Tyr-ProTrp-Thr), an endogenous factor isolated from bovine spinal cord that also inhibits other enkephalin-degrading enzymes, such as neutral endopeptidase (NEP, neprilysin), aminopeptidase, and angiotensin-converting enzyme (13). Because of a different mode of action compared with morphine, spinorp...