Dipeptidyl peptidase III (DPP III), the sole member and representative of the M49 family of metallopeptidases, is a zinc-dependent aminopeptidase. It sequentially hydrolyses dipeptides from the N-terminal of oligopeptides ranging from three to 10 amino acid residues. Although implicated in an array of pathophysiological phenomena, the precise function of this peptidase is still unclear. However, a number of studies advocate its contribution in terminal stages of protein turnover. Altered expression of DPP III which suggests its involvement in primary ovarian carcinoma, oxidative stress (Nrf2 nuclear localization), pain, inflammation and cataractogenesis has recently led to resurgence of interest in delineating the role of the peptidase in these pathophysiological processes. This review article intends to bring forth the latest updates in this arena which may serve as a base for future studies on the peptidase.
It is generally accepted that the role of cathepsin L in cancer involves its activities outside the cells once it has been secreted. However, cathepsin L isoforms that are devoid of a signal peptide were recently shown to be present in the nucleus where they proteolytically process the CCAAT-displacement protein/cut homeobox (CDP/Cux) transcription factor. A role for nuclear cathepsin L in cell proliferation could be inferred from the observation that the CDP/Cux processed isoform can accelerate entry into S phase. Here, we report that in many transformed cells the proteolytic processing of CDP/Cux is augmented and correlates with increased cysteine protease expression and activity in the nucleus. Taking advantage of an antibody that recognizes the prodomain of human cathepsin L, we showed that human cells express short cathepsin L species that do not contain a signal peptide, do not transit through the endoplasmic reticulum, are not glycosylated, and localize to the nucleus. We also showed that transformation by the ras oncogene causes rapid increases both in the production of short nuclear cathepsin L isoforms and in the processing of CDP/Cux. Using a cell-based assay, we showed that a cell-permeable inhibitor of cysteine proteases is able to delay the progression into S phase and the proliferation in soft agar of ras-transformed cells, whereas the non -cell-permeable inhibitor had no effect. Taken together, these results suggest that the role of cathepsin L in cancer might not be limited to its extracellular activities but may also involve its processing function in the nucleus. (Mol Cancer Res 2007;5(9):899 -907)
Chronic exposure of the oral mucosa to carcinogens in tobacco is linked to inflammation and development of oral premalignant lesions (OPLs) with high risk of progression to cancer; there is currently no clinical methodology to identify high-risk lesions. We hypothesized that identification of differentially expressed proteins in OPLs in relation to normal oral tissues using proteomic approach will reveal changes in multiple cellular pathways and aid in biomarker discovery. Isobaric mass tags (iTRAQ)-labeled oral dysplasias and normal tissues were compared against pooled normal control by online liquid chromatography and tandem mass spectrometry. Verification of biomarkers was carried out in an independent set of samples by immunohistochemistry, immunoblotting, and RT-PCR. We identified 459 nonredundant proteins in OPLs, including structural proteins, signaling components, enzymes, receptors, transcription factors, and chaperones. A panel of three best-performing biomarkers identified by iTRAQ analysis and verified by immunohistochemistrystratifin (SFN), YWHAZ, and hnRNPKachieved a sensitivity of 0.83, 0.91, specificity of 0.74, 0.95, and predictive value of 0.87 and 0.96, respectively, in discriminating dysplasias from normal tissues, thereby confirming their utility as potential OPL biomarkers. Pathway analysis revealed direct interactions between all the three biomarkers and their involvement in two major networks involved in inflammation, signaling, proliferation, regulation of gene expression, and cancer. In conclusion, our work on determining the OPL proteome unraveled novel networks linking inflammation and development of epithelial dysplasia and their key regulatory proteins may serve as novel chemopreventive/therapeutic targets for early intervention. Additionally, we identified and verified a panel of OPL biomarkers that hold promise for large-scale validation for ultimate clinical use.
Oral leukoplakia is a heterogeneous lesion with risk of cancer development; there are no biomarkers to predict its potential of malignant transformation. Tissue proteomic analysis of oral leukoplakia using iTRAQ labeling liquid chromatography–mass spectrometry showed overexpression of heterogeneous ribonucleoprotein K (hnRNP K), a transformation‐related RNA‐binding protein, in leukoplakia in comparison with normal tissue. Herein, we investigated the clinical significance of hnRNP K in identification of oral leukoplakic lesions in early stages and as a prognostic marker in head‐and‐neck/oral squamous cell carcinomas (HNOSCCs). Immunohistochemical analysis of hnRNP K was performed in 100 HNOSCCs, 199 leukoplakias and 55 nonmalignant tissues and correlated with clinicopathologic parameters and disease prognosis over 6 years for HNOSCCs. hnRNP K nuclear expression increased from normal tissues to leukoplakia, and frank malignancy (p < 0.001). Cytoplasmic hnRNP K increased significantly from leukoplakia to HNOSCCs (p < 0.001) and was associated with poor prognosis of HNOSCCs (p = 0.011) by Kaplan–Meier analysis. The most important finding of our follow‐up study is that cytoplasmic hnRNP K is an independent predictor of disease recurrence in HNOSCC patients. In conclusion, nuclear hnRNP K may serve as a potential marker for early diagnosis, whereas its cytoplasmic accumulation can help to identify a subgroup of HNOSCC patients with poor prognosis, suggesting its putative utility in clinical management of HNOSCC. © 2009 UICC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.