In this paper we study the problem of Hamiltonization of nonholonomic systems from a geometric point of view. We use gauge transformations by 2-forms (in the sense ofŠevera and Weinstein [29]) to construct different almost Poisson structures describing the same nonholonomic system. In the presence of symmetries, we observe that these almost Poisson structures, although gauge related, may have fundamentally different properties after reduction, and that brackets that Hamiltonize the problem may be found within this family. We illustrate this framework with the example of rigid bodies with generalized rolling constraints, including the Chaplygin sphere rolling problem. We also see how twisted Poisson brackets appear naturally in nonholonomic mechanics through these examples.