1998
DOI: 10.1142/s0217732398000668
|View full text |Cite
|
Sign up to set email alerts
|

Dirac Electron in a Coulomb Field in (2+1) Dimensions

Abstract: Exact solutions of Dirac equation in two spatial dimensions in the Coulomb field are obtained. Equation which determines the so-called critical charge of the Coulomb field is derived and solved for a simple model.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

3
77
1
3

Year Published

1999
1999
2016
2016

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 78 publications
(84 citation statements)
references
References 12 publications
3
77
1
3
Order By: Relevance
“…The optical absorption energies of the excitonic bound states are obtained by solving the two particle problem for the Dirac equation. The expression for the optical absorption energies of the excitons is 24,25 :…”
Section: Matching the Experimental Datamentioning
confidence: 99%
“…The optical absorption energies of the excitonic bound states are obtained by solving the two particle problem for the Dirac equation. The expression for the optical absorption energies of the excitons is 24,25 :…”
Section: Matching the Experimental Datamentioning
confidence: 99%
“…Since the LCAO method employs a superposition of states localized near one of the centers, we first summarize the known single-impurity solution for the lowest bound state [7,8,11]. Taking a single impurity of charge Z, i.e., using V = −Z/r in Eq.…”
Section: Single-impurity Ground Statementioning
confidence: 99%
“…For sufficiently large Z > Z c , these bound states are predicted to "dive" into the filled Dirac sea [4,7,8,9,10,11,12,13], whereby the nucleus captures an electron to reduce its charge. In conventional realizations, the large value of the critical charge, Z c ≈ 170, renders the experimental observation of supercriticality prohibitively difficult [14,15].…”
Section: Introductionmentioning
confidence: 99%
“…Следует отметить, что в отсутствие потенциала Ааронова-Бома эта проблема была всесторонне изучена в работах [17]- [22] в 3 + 1 измерениях и в рабо-тах [12], [13] в 2 + 1 измерениях.…”
Section: критический заряд рождение позитроновunclassified
“…Задача о поведении электрона в сильном (обрезанном) кулоновском поле в 2+1 из-мерениях в отсутствие потенциала Ааронова-Бома была изучена в работах [12], [13]. В этих работах, в частности, было показано, что с увеличением a низший уро-вень энергии электрона при a 2 > 1/4 становится отрицательным и при дальней-шем увеличении a может достичь границы нижнего континуума (отрицательных) В. Р. ХАЛИЛОВ энергий −m.…”
Section: критический заряд рождение позитроновunclassified