Despite the increasing degree of automation many tasks are still performed manually, especially in production of individualized, sensitive or quality critical products. These tasks, e.g. tasks in or above head level, are often non ergonomic. Thus musculoskeletal diseases can occur. This paper presents a novel concept for a modular and wearable technical support system for reducing musculoskeletal stress. The support system which is based on the approach of Human Hybrid Robot (HHR) can be adapted easily to different users and activities. The system emphasizes on modularity and the use of soft materials for kinematic elements and interfaces in order to gain higher flexibility and increased human safety. The basic idea can be applied to various applications. The focus lies on a functional support system prototype for upper extremities. It comprises a Human-Machine-Interface using a vest equipped with soft kinematic elements as well as a control unit. Moreover, results from a biomechanical case study will be illustrated in order to confirm the ergonomic improvements, especially the comparison of the range of motion and the musculoskeletal stress during tasks.