Polymer molecules when physically confined at nanometer length scales diffuse nonclassically and very differently depending on their molecular weight and the nature of the confinement. Long polymers that exhibit "snakelike" reptation based mobility in melts may diffuse faster in confined nanometer sized cylinders with pore diameter d approximately 15 nm, and short polymers subject to Rouse dynamics have shown signatures of reptation and slower diffusion when confined in nanoporous glass with d approximately 4 nm. However, the mobility of short polymers with radii of gyration similar to a smaller pore diameter (d < or = 2.1 nm) but with extended lengths well larger than the pore diameter has not as yet been studied. In this work, we demonstrate that those short molecules including nonionic surfactants can readily diffuse in strongly hydrophobic nanoporous glasses film with d < or = 2.1 nm. The diffusivity was found sensitive to molecular weight, hydrophilic-lipophilic balance, and molecular structure of surfactants. Remarkably, analysis of the measured diffusion coefficients reveals that short-chain surfactants exhibit signature of reptation based diffusion in the nanoscopic pore confinements. Such reptation mobility in agreement with theoretical predictions is not even observed in reptating polymer melts due to fluctuations of the entanglement pathway. The fixed pathways in the interconnected nanoporous films provide ideal nanoscale environments to explore mobility of confined molecules, and the results have implications for a number of technologies where nanoporous materials are in contact with surfactant molecules.