Proton detection has attracted immense interest recently, owing to the increasing demands for applications in physics, medicine, and space. However, the proton detectors suffer from a general problem of performance degradation caused by the proton irradiation-induced defects over long-term operation. Herein, we report a proton detector based on the methylammonium lead tribromide (MAPbBr 3 ) perovskite single crystal, which exhibits remarkable radiation tolerance. The detector can monitor the fluence rate and dose quantitatively up to a high dose of 45 kGy with a fairly low bias electric field (0.01 V μm −1 ). Further increasing the dose to 1 MGy (7.3 × 10 13 p cm −2 ) results in the detector dark current degrading gradually, but the dark current can rapidly recover at room temperature in a few hours after irradiation, showing a desirable self-healing characteristic, which can further enhance the radiation tolerance of the detector. These results show that this perovskite-based proton detector is highly promising for future applications in proton therapy, proton radiography, and so forth.