Stokes phase is the phase difference between orthogonal component states in the decomposition of any polarization state. Phase singularities in the Stokes phase distribution are Stokes singularities of an inhomogeneous polarization distribution. Under circular decomposition, Stokes phase distribution $$(\phi _{12})$$
(
ϕ
12
)
represents polarization azimuth $$(\gamma )$$
(
γ
)
distribution and the singularities present in it are polarization singularities. Therefore, the charge of the Stokes vortices depicted as Stokes index $$\sigma _{12}$$
σ
12
is an important parameter associated with the polarization singularity. The Hybrid order Poincaré sphere (HyOPS)/Higher order Poincaré sphere (HOPS) beams, all having same Stokes index, contain a Stokes singularity at the center of the beam as these beams are constructed by vortex superposition. These beams, being superposition of orthogonal orbital angular momentum (OAM) states in orthogonal spin angular momentum (SAM) states can offer great multiplexing capabilities in communication. In this article, we identify these degenerate Stokes index states and discuss the ways and means of lifting this degeneracy. Otherwise, there are limitations on intensity based detection techniques, where demultiplexing or segregation of different HOPS/HyOPS beams is warranted. The method adduced here uses the diffraction of these beams through an equilateral triangular aperture in combination with polarization transformation as a probe to lift the Stokes index/Stokes phase degeneracy. Successively, the novelty of the detection scheme is discussed in the context of beams with alike polarization distributions where even the technique of Stokes polarimetry fails to predict the OAM and SAM content of the beam.