Maskless lithography based on a digital micromirror device (DMD) has the advantages of high process flexibility and a low production cost. However, due to the trade-off relationship between the pixel size and exposure area, it is challenging to achieve high resolutions and high patterning speeds at the same time, which hinders the wider application of this technology in micro- and nano-fabrication processes. In addition, micromirrors in DMDs create pixelated edges that limit the pattern quality. In this paper, we propose a novel DMD maskless lithography method to improve the pattern quality during high-speed continuous patterning by means of pulse exposure and oblique scanning processes. A unique criterion, the pixel occupancy, was devised to determine the parameters related to the pulse exposure and oblique scanning optimally. We also studied how the duty cycle of the pulse exposure affects the pattern quality. As a result, we were able to increase the scanning speed up to the speed limit considering the damage threshold of the DMD and improve the pattern quality by resolving the pixelation problem. We anticipate that this method can be used in various microfabrication fields with short product life cycles or in those that require custom designs, such as the manufacturing of PCBs, MEMS devices, and micro-optics devices, among others.