Polarization-resolved coherent Raman scattering (polar-CRS) provides rich information on molecular orientational organization, with the strong advantages of being a label-free and chemically specific imaging method. Its implementation, however, strongly reduces the imaging acquisition rate, due to limits imposed by polarization tuning. Here we demonstrate fast-polar-CRS imaging based on combined electro-optic polarization and acousto-optic amplitude modulations, applicable to both stimulated Raman scattering and coherent anti-Stokes Raman scattering imaging. The proposed scheme adds polarization information without compromising the capacities of regular CRS intensity imaging; increases the speed of orientational imaging by two orders of magnitude as compared with previous approaches; and does not require post-processing analyses. We show that this method permits sub-second time-scale imaging of lipid order packing and local lipid membrane deformations in artificial lipid multilayers, but also in red blood cell ghosts, demonstrating its high sensitivity down to a single lipid bilayer membrane.