Validation of three direct simulation Monte Carlo chemistry models—total collision energy, Quantum Kinetic, and Kuznetsov state specific (KSS)—is conducted through the comparison of calculated vibrational temperatures of molecular oxygen with measured values inside a normal shock wave. First, the 2D geometry and numerical approach used to simulate the shock experiments is verified. Next, two different vibrational relaxation models are validated by comparison with data for the M = 9.3 case where dissociation is small in the nonequilibrium region of the shock and with newly obtained thermal rates. Finally, the three chemistry model results are compared for M = 9.3 and 13.4 in the region where the vibrational temperature is greatly different from the rotational and translational temperature, and thus nonequilibrium dissociation is important. It is shown that the peak vibrational temperature is very sensitive to the initial nonequilibrium rate of reaction in the chemistry model and that the vibrationally favored KSS model is much closer to the measured peak, but the post-peak behavior indicates that some details of the model still need improvement.