Fabrication of extracellular microenvironment for cancer cell growth in vitro is an indispensable technique to precisely control the cell spatial arrangement and proliferation for cell-behavior research. Current micropatterning methods usually require relatively complicated operations, which makes it difficult to investigate the effects of different cell growth patterns. This manuscript proposes a DMD-based projection technique to quickly pattern a poly(ethylene) glycol diacrylate (PEGDA)-based hydrogel on a common glass substrate. Using this method, we can effectively control the growth patterns of cells. Compared with these traditional methods which employ digital dynamic mask, polymerization of PEGDA solution can be used to create arbitrary shaped microstructures with high efficiency, flexibility and repeatability. The duration of UV exposure is less than 10 s through controlling the projected illumination pattern. The ability of patterned PEGDA-coated film to hinder cell adhesion makes it possible to control area over which cells attach. In our experiments, we take advantage of the blank area to pattern cells, which allows cells to grow in various pre-designed shapes and sizes. And the patterning cells have a high viability after culturing for several days. Interestingly, we found that the restricted space could stiffen and strengthen the cells. These results indicate that cells and extracellular microenvironment can influence each other.