NADP-dependent aminoalcohol dehydrogenase (AADH) of Rhodococcus erythropolis MAK154 produces double chiral aminoalcohols, which are used as pharmaceuticals. However, the genetic manipulation of Rhodococcus strains to increase their production of such industrially important enzymes is not well studied. Therefore, I aimed to construct Rhodococcus expression vectors, derived from the Rhodococcus-Escherichia coli shuttle vector pRET1102, to express aadh. The plasmid pRET1102 could be transformed into many actinomycete strains, including R. erythropolis. The transformation efficiency for a species closely related to R. erythropolis was higher than that for other actinomycete strains. Promoters of various strengths, hsp, 1200rep, and TRR, were obtained from Gram-positive bacteria. The activity of TRR was stronger than that of hsp and 1200rep. The aadh-expressing plasmid pRET1172 with TRR could be transformed into many actinomycete strains to increase their AADH production. The Rhodococcus expression vector, pRET11100, constructed by removing aadh from the pRET1172 plasmid may be useful for bioconversion.