Biocomposite
matrices with high mechanical strength, high stability,
and the ability to direct matrix-specific stem cell differentiation
are essential for the reconstruction of lesioned tissues in tissue
engineering and cell therapeutics. Toward this end, we used the electrospinning
technique to fabricate well-aligned composite fibers from collagen
and spider dragline silk protein, obtained from the milk of transgenic
goats, mimicking the native extracellular matrix (ECM) on a similar
scale. Collagen and the dragline silk proteins were found to mix homogeneously
at all ratios in the electrospun (E-spun) fibers. As a result, the
ultimate tensile strength and elasticity of the fibers increased monotonically
with silk percentage, whereas the stretchability was slightly reduced.
Strikingly, we found that the incorporation of silk proteins to collagen
dramatically increased the matrix stability against excessive fiber
swelling and shape deformation in cell culture medium. When human
decidua parietalis placental stem cells (hdpPSCs) were seeded on the
collagen–silk matrices, the matrices were found to support
cell proliferation at a similar rate as that of the pure collagen
matrix, but they provided cell adhesion with reduced strengths and
induced cell polarization at varied levels. Matrices containing 15
and 30 wt % silk in collagen (CS15, CS30) were found to induce a level
of neural differentiation comparable to that of pure collagen. In
particular, CS15 matrix induced the highest extent of cell polarization
and promoted the development of extended 1D neural filaments strictly
in-line with the aligned fibers. Taking the increased mechanical strength
and fiber stability into consideration, CS15 and CS30 E-spun fibers
offer better alternatives to pure collagen fibers as scaffolds that
can be potentially utilized in neural tissue repair and the development
of future nanobiodevices.