A dual-polarized multiple signal classification (DP-MUSIC) algorithm is presented to estimate the arrival directions and polarizations for a dual-polarized conformal array. Each polarization signal is decomposed into two orthogonal polarization components, which are considered to be a pair of coherent signals coming from the same direction but different polarization. The polarization parameters are modeled as the equivalent coherence coefficients of the orthogonal polarization components. Then, the method of decoherence can be used to decouple the information of polarization states and signal angles. After that, the direction of arrival (DOA) and polarization parameters can be estimated by the DP-MUSIC algorithm. Moreover, the angles of incident direction are re-estimated, which greatly improves the accuracy of DOA estimation. The Cramer–Rao bound (CRB) is derived and the effectiveness of the proposed algorithm is verified by Monte Carlo simulations.