2021
DOI: 10.1016/j.media.2021.102030
|View full text |Cite
|
Sign up to set email alerts
|

Directional-TV algorithm for image reconstruction from limited-angular-range data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
52
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
1

Relationship

2
4

Authors

Journals

citations
Cited by 61 publications
(52 citation statements)
references
References 29 publications
0
52
0
Order By: Relevance
“…We then perform visual inspection of the images reconstructed. Additionally, we also perform a quantitative evaluation of image reconstructed from data collected with two‐orthogonal‐arc configurations by using the normalized root‐mean‐square‐error (nRMSE) metric nRMSE(boldf[recon])=||ffalse[reconfalse]ffalse[truthfalse]false|false|2/||ffalse[truthfalse]false|false|2,\begin{equation} {\rm nRMSE}(\mathbf {f}^{\rm [recon]}) = ||\mathbf {f}^{\rm [recon]}-\mathbf {f}^{\rm [truth]}||_2/||\mathbf {f}^{\rm [truth]}||_2, \end{equation}and the Pearson‐correlation‐coefficient (PCC) metric 8,20 PCC(boldf[recon])=|Cov(boldf[recon],boldf[truth])|σfalse(ffalse[reconfalse]false)σfalse(ffalse[truthfalse]false),\begin{eqnarray} \hspace{-42.67912pt} {\rm PCC}(\mathbf {f}^{\rm [recon]}) & = & \frac{\vert \rm Cov(\mathbf {f}^{\rm [recon]}, \mathbf {f}^{\rm [truth]})\vert }{\sigma (\mathbf {f}^{\rm [recon]}) \, \sigma (\mathbf {f}^{\rm [truth]})}, \end{eqnarray}where boldf[recon]$\mathbf {f}^{\rm [recon]}$ and boldf[truth]$\mathbf {f}^{\rm [truth]}$ denote the reconstructed and truth images within a selected ROI, Covfalse(ffalse[reconfalse],f<...>…”
Section: Methodsmentioning
confidence: 99%
“…We then perform visual inspection of the images reconstructed. Additionally, we also perform a quantitative evaluation of image reconstructed from data collected with two‐orthogonal‐arc configurations by using the normalized root‐mean‐square‐error (nRMSE) metric nRMSE(boldf[recon])=||ffalse[reconfalse]ffalse[truthfalse]false|false|2/||ffalse[truthfalse]false|false|2,\begin{equation} {\rm nRMSE}(\mathbf {f}^{\rm [recon]}) = ||\mathbf {f}^{\rm [recon]}-\mathbf {f}^{\rm [truth]}||_2/||\mathbf {f}^{\rm [truth]}||_2, \end{equation}and the Pearson‐correlation‐coefficient (PCC) metric 8,20 PCC(boldf[recon])=|Cov(boldf[recon],boldf[truth])|σfalse(ffalse[reconfalse]false)σfalse(ffalse[truthfalse]false),\begin{eqnarray} \hspace{-42.67912pt} {\rm PCC}(\mathbf {f}^{\rm [recon]}) & = & \frac{\vert \rm Cov(\mathbf {f}^{\rm [recon]}, \mathbf {f}^{\rm [truth]})\vert }{\sigma (\mathbf {f}^{\rm [recon]}) \, \sigma (\mathbf {f}^{\rm [truth]})}, \end{eqnarray}where boldf[recon]$\mathbf {f}^{\rm [recon]}$ and boldf[truth]$\mathbf {f}^{\rm [truth]}$ denote the reconstructed and truth images within a selected ROI, Covfalse(ffalse[reconfalse],f<...>…”
Section: Methodsmentioning
confidence: 99%
“…We formulate the reconstruction problem from either low-or high-kVp data over an arc of LAR as a convex optimization problem [10] given by:…”
Section: Image Reconstructionmentioning
confidence: 99%
“…As the detailed derivation of the DTV algorithm can be found in Appendix A of Ref. [10], we list below only the pseudo-code of the DTV algorithm.…”
Section: Image Reconstructionmentioning
confidence: 99%
See 2 more Smart Citations