2022
DOI: 10.1016/j.joep.2022.102487
|View full text |Cite
|
Sign up to set email alerts
|

(Dis)honesty in the face of uncertain gains or losses

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(3 citation statements)
references
References 45 publications
0
2
0
1
Order By: Relevance
“…Based on rich experimental and empirical data, much research in economics, Psychology and Neuroscience have discussed an extensive number of motives and circumstances that may drive people’s tendency to cheat, such as self-image and reputation concerns (Abeler et al, 2019; Mazar et al, 2008; Ploner & Regner, 2013); features of the reporting system (e.g., online vs. offline, anonymity vs. public; Behnk et al, 2019; Dickinson & McEvoy, 2021; Schitter et al, 2019); size and the probability of getting the incentive (Celse et al, 2019; Conrads et al, 2014; Gneezy, 2005; Lewis et al, 2012; Steinel et al, 2022); and various social environments (e.g., competition pressure, team incentive, perceived fairness, moral reminders, social norms, beneficiaries and victims from dishonesty; Chua et al, 2022; Conrads et al, 2013; Gawn & Innes, 2019; Gino et al, 2013; Houser et al, 2012; Keizer et al, 2008; Köbis et al, 2019; Mitra & Shahriar, 2020; Schwieren & Weichselbaumer, 2010; Zhao et al, 2019). In addition, research has also linked individual characteristics such as age, gender, and personality traits to the tendency to cheat (Bucciol & Piovesan, 2011; Childs, 2012; Dreber & Johannesson, 2008; Friesen & Gangadharan, 2012; Gerlach et al, 2019; Gibson et al, 2013; Hauk & Saez-Marti, 2002; Pfattheicher et al, 2019; Piazza et al, 2011; Tobol et al, 2022).…”
Section: Theory 1: Cognitive Regulation Accountmentioning
confidence: 99%
“…Based on rich experimental and empirical data, much research in economics, Psychology and Neuroscience have discussed an extensive number of motives and circumstances that may drive people’s tendency to cheat, such as self-image and reputation concerns (Abeler et al, 2019; Mazar et al, 2008; Ploner & Regner, 2013); features of the reporting system (e.g., online vs. offline, anonymity vs. public; Behnk et al, 2019; Dickinson & McEvoy, 2021; Schitter et al, 2019); size and the probability of getting the incentive (Celse et al, 2019; Conrads et al, 2014; Gneezy, 2005; Lewis et al, 2012; Steinel et al, 2022); and various social environments (e.g., competition pressure, team incentive, perceived fairness, moral reminders, social norms, beneficiaries and victims from dishonesty; Chua et al, 2022; Conrads et al, 2013; Gawn & Innes, 2019; Gino et al, 2013; Houser et al, 2012; Keizer et al, 2008; Köbis et al, 2019; Mitra & Shahriar, 2020; Schwieren & Weichselbaumer, 2010; Zhao et al, 2019). In addition, research has also linked individual characteristics such as age, gender, and personality traits to the tendency to cheat (Bucciol & Piovesan, 2011; Childs, 2012; Dreber & Johannesson, 2008; Friesen & Gangadharan, 2012; Gerlach et al, 2019; Gibson et al, 2013; Hauk & Saez-Marti, 2002; Pfattheicher et al, 2019; Piazza et al, 2011; Tobol et al, 2022).…”
Section: Theory 1: Cognitive Regulation Accountmentioning
confidence: 99%
“…Manfaat lainnya dari kejujuran yaitu dapat meningkatkan kinerja (Fernández-del-Río et al, 2020), meningkatkan kesehatan pisik dan mental (Weziak-Bialowolska et al, 2021), meningkatkan kesadaran diri (Bender et al, 2018), meningkatkan control diri (Blay et al, 2019), diberi kesempatan dalam sisi kehidupan (Steinel et al, 2022). Hal ini membuktikan bahwa kejujuran memiliki manfaat yang sangat banyak sekali baik secara internal maupun eksternal serta spiritual.…”
Section: Pendahuluanunclassified
“…Many such values may be calculated for values that exceed commonly used data types. At the same time, in order to avoid the spurious regression of industry data and eliminate the heteroscedasticity of industry data, without changing the nature and correlation of the time series [7], the distribution of the data conforms to the assumptions we have made, so that we can use the existing theory for related analysis, we performed the operation steps of taking the natural logarithm of the industry data: (i=1, 2, …, n; j=1, 2, …, m)…”
Section: Data Preprocessingmentioning
confidence: 99%