Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/) eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
AbstractHerein, we present a numerical convergence study of the Cahn-Hilliard phase-field model within an isogeometric finite element analysis framework. Using a manufactured solution, a mixed formulation of the Cahn-Hilliard equation and the direct discretisation of the weak form, which requires a C 1 -continuous approximation, are compared in terms of convergence rates. For approximations that are higher than second-order in space, the direct discretisation is found to be superior. Suboptimal convergence rates occur when splines of order p = 2 are used. This is validated with a priori error estimates for linear problems. The convergence analysis is completed with an investigation of the temporal discretisation. Second-order accuracy is found for the generalised-α method. This ensures the functionality of an adaptive time stepping scheme which is required for the efficient numerical solution of the Cahn-Hilliard equation. The isogeometric finite element framework is eventually validated by two numerical examples of spinodal decomposition.