SUMMARYPhase-field approaches to fracture offer new perspectives toward the numerical solution of crack propagation. In this paper, a phase-field method for finite deformations and general nonlinear material models is introduced using a novel multiplicative split of the principal stretches to account for the different behavior of fracture in tension and compression. An energy-momentum consistent integrator is developed and applied to the arising nonlinear coupled phase-field model. This approach is thermodynamically consistent in the sense that the first law of thermodynamics if fulfilled with respect to the dissipation function. The capabilities and the performance of the proposed approach is demonstrated in several representative examples.
This paper presents a variational formulation of viscoplastic constitutive updates for porous elastoplastic materials. The material model combines von Mises plasticity with volumetric plastic expansion as induced, e.g., by the growth of voids and defects in metals. The finite deformation theory is based on the multiplicative decomposition of the deformation gradient and an internal variable formulation of continuum thermodynamics. By the use of logarithmic and exponential mappings the stress update algorithms are extended from small strains to finite deformations. Thus the time-discretized version of the porous-viscoplastic constitutive updates is described in a fully variational manner. The range of behavior predicted by the model and the performance of the variational update are demonstrated by its application to the forced expansion and fragmentation of U-6%Nb rings.
Variationally consistent phase-field methods have been shown to be able to predict complex three-dimensional crack patterns. However, current computational methodologies in the context of large deformations lack the necessary numerical stability to ensure robustness in different loading scenarios. In this work, we present a novel formulation for finite strain polyconvex elasticity by introducing a new anisotropic split based on the principal invariants of the right Cauchy-Green tensor, which always ensures polyconvexity of the resulting strain energy function. The presented phase-field approach is embedded in a sophisticated isogeometrical framework with hierarchical refinement for three-dimensional problems using a fourth order Cahn-Hilliard crack density functional with higher-order convergence rates for fracture problems. Additionally, we introduce for the first time a Hu-Washizu mixed variational formulation in the context of phase-field problems, which permits the novel introduction of a variationally consistent stress-driven split. The new polyconvex phase-field fracture formulation guarantees numerical stability for the full range of deformations and for arbitrary hyperelastic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.