SUMMARYWe present a one-parameter family of approximation schemes, which we refer to as local maximumentropy approximation schemes, that bridges continuously two important limits: Delaunay triangulation and maximum-entropy (max-ent) statistical inference. Local max-ent approximation schemes represent a compromise-in the sense of Pareto optimality-between the competing objectives of unbiased statistical inference from the nodal data and the definition of local shape functions of least width. Local max-ent approximation schemes are entirely defined by the node set and the domain of analysis, and the shape functions are positive, interpolate affine functions exactly, and have a weak Kronecker-delta property at the boundary. Local max-ent approximation may be regarded as a regularization, or thermalization, of Delaunay triangulation which effectively resolves the degenerate cases resulting from the lack or uniqueness of the triangulation. Local max-ent approximation schemes can be taken as a convenient basis for the numerical solution of PDEs in the style of meshfree Galerkin methods. In test cases characterized by smooth solutions we find that the accuracy of local max-ent approximation schemes is vastly superior to that of finite elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.