Motivation: Emerging Linked-Read (aka read-cloud) technologies such as the 10x Genomics Chromium system have great potential for accurate detection and phasing of largescale human genome structural variations (SVs). By leveraging the long-range information encoded in Linked-Read sequencing, computational techniques are able to detect and characterize complex structural variations that are previously undetectable by short-read methods. However, there is no available Linked-Read method for detection and assembly of novel sequence insertions, DNA sequences present in a given sequenced sample but missing in the reference genome, without requiring whole genome de novo assembly. In this paper, we propose a novel integrated alignment-based and local-assembly-based algorithm, Novel-X, that effectively uses the barcode information encoded in Linked-Read sequencing datasets to improve detection of such events without the need of whole genome de novo assembly. We evaluated our method on two haploid human genomes, CHM1 and CHM13, sequenced on the 10x Genomics Chromium system. These genomes have been also characterized with high coverage PacBio long-reads recently. We also tested our method on NA12878, the wellknown HapMap CEPH diploid genome and the child genome in a Yoruba trio (NA19240) which was recently studied on multiple sequencing platforms. Detecting insertion events is very challenging using short reads and the only viable available solution is by long-read sequencing (e.g. PabBio or ONT). Our experiments, however, show that Novel-X finds many insertions that cannot be found by state of the art tools using short-read sequencing data but present in PacBio data. Since Linked-Read sequencing is significantly cheaper than long-read sequencing, our method using Linked-Reads enables routine large-scale screenings of sequenced genomes for novel sequence insertions.