Supplementary data are available at Bioinformatics online.
High-throughput sequencing provides the means to determine the allelic decomposition for any gene of interest—the number of copies and the exact sequence content of each copy of a gene. Although many clinically and functionally important genes are highly polymorphic and have undergone structural alterations, no high-throughput sequencing data analysis tool has yet been designed to effectively solve the full allelic decomposition problem. Here we introduce a combinatorial optimization framework that successfully resolves this challenging problem, including for genes with structural alterations. We provide an associated computational tool Aldy that performs allelic decomposition of highly polymorphic, multi-copy genes through using whole or targeted genome sequencing data. For a large diverse sequencing data set, Aldy identifies multiple rare and novel alleles for several important pharmacogenes, significantly improving upon the accuracy and utility of current genotyping assays. As more data sets become available, we expect Aldy to become an essential component of genotyping toolkits.
High-throughput sequencing (HTS) data are commonly stored as raw sequencing reads in FASTQ format or as reads mapped to a reference, in SAM format, both with large memory footprints. Worldwide growth of HTS data has prompted the development of compression methods that aim to significantly reduce HTS data size. Here we report on a benchmarking study of available compression methods on a comprehensive set of HTS data using an automated framework.
MotivationSegmental duplications (SDs) or low-copy repeats, are segments of DNA > 1 Kbp with high sequence identity that are copied to other regions of the genome. SDs are among the most important sources of evolution, a common cause of genomic structural variation and several are associated with diseases of genomic origin including schizophrenia and autism. Despite their functional importance, SDs present one of the major hurdles for de novo genome assembly due to the ambiguity they cause in building and traversing both state-of-the-art overlap-layout-consensus and de Bruijn graphs. This causes SD regions to be misassembled, collapsed into a unique representation, or completely missing from assembled reference genomes for various organisms. In turn, this missing or incorrect information limits our ability to fully understand the evolution and the architecture of the genomes. Despite the essential need to accurately characterize SDs in assemblies, there has been only one tool that was developed for this purpose, called Whole-Genome Assembly Comparison (WGAC); its primary goal is SD detection. WGAC is comprised of several steps that employ different tools and custom scripts, which makes this strategy difficult and time consuming to use. Thus there is still a need for algorithms to characterize within-assembly SDs quickly, accurately, and in a user friendly manner.ResultsHere we introduce SEgmental Duplication Evaluation Framework (SEDEF) to rapidly detect SDs through sophisticated filtering strategies based on Jaccard similarity and local chaining. We show that SEDEF accurately detects SDs while maintaining substantial speed up over WGAC that translates into practical run times of minutes instead of weeks. Notably, our algorithm captures up to 25% ‘pairwise error’ between segments, whereas previous studies focused on only 10%, allowing us to more deeply track the evolutionary history of the genome.Availability and implementationSEDEF is available at https://github.com/vpc-ccg/sedef.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.