Histidine metabolism is a key pathway physiologically involved in satiety, recognition memory, skin, and neural protection and allergic diseases. Microbiologicallyproduced imidazole propionate induces type II diabetes and interferes with glucose lowering drugs. Despite their determinant health implications, no single method simultaneously assesses histidine metabolites in urine, feces, and microbiota. The aim of this study was to develop a simple, rapid, and sensitive method for the determination of histidine and its major bioactive metabolites histamine, N-acetylhistamine, imidazole-4-acetate, cis-urocanate, trans-urocanate, glutamate and imidazole propionate, using ultrahigh-performance liquid chromatography with electrospray ionization tandem mass spectrometry. An innovative simple extraction method from small aliquots of human and mice urine, feces and