“…Moreover, the cubature rules [23] of the multivariate Chebyshev polynomials, that are obtained from the (anti)symmetric trigonometric functions [9,10] and associated with the Jacobi polynomials [5,24,25], are further intertwined with the Lie theoretical approach [8,26,27]. The role of the 2D and 3D Fourier-Weyl transforms as tools for solutions of the lattice vibration and electron propagation models [28,29] implies comparable function and direct applicability of the (anti)symmetric trigonometric transforms in solid state physics [30,31] and quantum field theory [32]. The potential diverse applications of both types of discrete transforms also involve image compression [33], laser optics [34], fluid flows [35], magnetostatic modeling [36], and micromagnetic simulations [37].…”