We present a novel formalism for describing the evolution of dynamic-link network parameters; it is based on the Cellular Automaton (CA) model. Such formalism is of wideuse for modeling natural (e.g., physical, chemical, etc.) processes. We propose a particular model and survey the related work, with respect to the use of CA to simulate various communication networks. We showcase the flexibility of the proposed approach to model different evolution patterns. These patterns can be used to emulate / simulate different network scenarios (states of the network parameters), and test novel implementations under distinct conditions. Additionally, we propose an algorithm for guaranteeing that the described patterns hold properties of interest, within a bounded time.