For improving the reducing gas flow in the center of a large-scale shaft furnace, the central gas distribution (CGD) device, a new technique, is proposed and installed in the shaft furnace. Because of its lessdeveloped history, the solid flow in the shaft furnace with CGD is unclear. In this work, a three-dimensional cylindrical model of COREX-3000 shaft furnace in actual size is established based on DEM. Four types of burden, including pellet, lump ore, coke and flux, are taken into consideration in the model. The model is validated by experiment and then it is used to investigate the influence of CGD structure on solid flow patterns, burden descending velocity, interaction force and abrasive wear. The results show that the CGD structure has some effects on the solid flow patterns and burden descending velocity. As the CGD diameter increases, the interaction force between particles is decreased but the total abrasion energy on CGD is increased. As the CGD height increases, both the interaction force between particles and the total abrasion energy on CGD are decreased.Keywords: COREX shaft furnace / central gas distribution (CGD) / DEM / solid flow / interaction force *