The cognitive radio (CR) technique has revealed a novel way of utilizing the precious radio spectrum via allowing unlicensed users to opportunistically access unutilized licensed bands. Using such a technique enables agile and flexible access to the radio spectrum and can resolve the spectrum-scarcity problem and maximize spectrum efficiency. However, two major impediments have been limiting the widespread adoption of cognitive radio technology. The software-defined radio technology, which is the enabling technology for the CR technique, is power-hungry and this raises a major concern for battery-constrained devices such as smart phones and laptops. Secondly, the opportunistic and open nature of the CR can lead to major security concerns about the data being sent and how safe it is. In this paper, we introduce an energy-and-security-aware CR-based communication approach that alleviates the power consumption of the CR technique and enhances its security measures according to the confidentiality level of the data being sent. Furthermore, the proposed approach takes into account user-related factors, such as the users battery level and users data type, and network-related factors, such as the number of unutilized bands and vulnerability level and then models the research question as a constrained optimization problem. Considering the time complexity of the optimum solution, we also propose a heuristic solution. We examine the proposed solution against existing solutions, and our obtained results show that the proposed approach can save energy consumption up to 18%, increase user throughput up to 20%, and achieve better spectrum utilization, up to 98%. Our proposed admission approach has the potential to open a new research direction towards safer and greener cognitive radio techniques. Index Terms-Cognitive radio, next generation wireless networks, green communications, cognitive radio security issues, software defined radio.