2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) 2016
DOI: 10.1109/icpeices.2016.7853388
|View full text |Cite
|
Sign up to set email alerts
|

Discriminating different color from EEG signals using Interval-Type 2 fuzzy space classifier (a neuro-marketing study on the effect of color to cognitive state)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
2
2

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(13 citation statements)
references
References 15 publications
0
11
0
2
Order By: Relevance
“…Rakshit and Lahiri used SVM and interval-type 2 fuzzy classifiers to classify red blue and green colors from EEG signals. Their model achieved the classification with 78.81% average accuracy for SVM-based color classification [67]. However, IT2FS achieved the highest 80.04% mean accuracy compared to other classifiers in the experiment.…”
Section: Machine Learning Application In Neuromarketingmentioning
confidence: 92%
See 1 more Smart Citation
“…Rakshit and Lahiri used SVM and interval-type 2 fuzzy classifiers to classify red blue and green colors from EEG signals. Their model achieved the classification with 78.81% average accuracy for SVM-based color classification [67]. However, IT2FS achieved the highest 80.04% mean accuracy compared to other classifiers in the experiment.…”
Section: Machine Learning Application In Neuromarketingmentioning
confidence: 92%
“…In 2016, Fan and Touyama applied spatial and temporal principal component analysis (STPCA) for feature extraction from ERP P300 signal. Rakshit and Lahiri [67] used a different approach to extract features from EEG signals. They used Welch method for one-sided power spectral density estimate and then applied a 256-point DFT algorithm on hamming window of length 50 to extract features.…”
Section: Brain Signal Processing In Neuromarketingmentioning
confidence: 99%
“…2011; Ohme and Matukin, 2012;Di Flumeri et al, 2016;Rakshit and Lahiri, 2016;Dulabh et al, 2018). EEG carries a relatively low cost for the equipment and tests.…”
Section: Electroencephalogrammentioning
confidence: 99%
“…A cor vermelha foi a que obteve melhor diferenciação pelo classificador utilizado, indicando que a mesma conseguiu se destacar entre as outras e provocou uma atividade cerebral peculiar, seguida da cor azul, amarela e verde. Em [15] foram obtidos resultados similares aos deste trabalho, onde a cor identificada com maior acurácia foi a vermelha, seguida pela azul, verde e amarela.…”
Section: Resultsunclassified
“…Segundo [16], os seres humanos são mais sensíveis a cores com maior comprimento de onda, como a cor vermelha (na faixa de 625nm a 740nm). Os autores de [15] afirmam que diferentes cores estão associadas a diferentes emoções e estados mentais; e a cor vermelha provocaria também maior ativação do estado mental. Entretanto, segundo o experimento realizado por [8], a cor vermelha é relatada como a menos confortável para os usuários.…”
Section: Resultsunclassified