“…Pattern discovery can be grouped into (i) ML methods directly targeting imaging data (Brent and Boucheron, 2018;Casiraghi et al, 2018;Gupta et al, 2019;Kistenev et al, 2019;Li et al, 2019;Rivenson et al, 2019;Vu et al, 2019), (ii) ML-based predictive modeling for TE scaffolds (Buggenthin et al, 2017;Tanaka et al, 2017;Chaudhury et al, 2018;Nitta et al, 2018;Marzi et al, 2019;Waisman et al, 2019), and (iii) a broad range of bioinformatics such as network analysis (Camacho et al, 2018). Specifically, several studies are (i) predicting tissue properties with DL from images or experimental observations (Liang et al, 2017;Brent and Boucheron, 2018;Kusumoto et al, 2018;Berisha et al, 2019;Gupta et al, 2019;Kistenev et al, 2019;Lutnick et al, 2019;Rivenson et al, 2019;Vu et al, 2019;Xie et al, 2019), (ii) classifying tissue type, state, and material properties with various ML methods (Casiraghi et al, 2018;Hailstone et al, 2018;Li et al, 2019), (iii) integrating multiple imaging platforms and experiments (Heredia-Juesas et al, 2018), (iv) modeling tissues for pattern discovery and predictive modeling (Bilgin et al, 2010;Yener, 2016;Kusumoto et al, 2018), and (v) extracting information from images for TE (Gholami et al, 2018).…”