High-resolution visible remote sensing imagery and thermal infrared hyperspectral imagery are potential data sources for land-cover classification. In this paper, in order to make full use of these two types of imagery, a spatial-spectral-emissivity land-cover classification method based on the fusion of visible and thermal infrared hyperspectral imagery is proposed, namely, SSECRF (spatial-spectral-emissivity land-cover classification based on conditional random fields). A spectral-spatial feature set is constructed considering the spectral variability and spatial-contextual information, to extract features from the high-resolution visible image. The emissivity is retrieved from the thermal infrared hyperspectral image by the FLAASH-IR algorithm and firstly introduced in the fusion of the visible and thermal infrared hyperspectral imagery; also, the emissivity is utilized in SSECRF, which contributes to improving the identification of man-made objects, such as roads and roofs. To complete the land-cover classification, the spatial-spectral feature set and emissivity are integrated by constructing the SSECRF energy function, which relates labels to the spatial-spectral-emissivity features, to obtain an improved classification result. The classification map performs a good result in distinguishing some certain classes, such as roads and bare soil. Also, the experimental results show that the proposed SSECRF algorithm efficiently integrates the spatial, spectral, and emissivity information and performs better than the traditional methods using raw radiance from thermal infrared hyperspectral imagery data, with a kappa value of 0.9137.