Hyperspectral images are characterized by hundreds of spectral bands and rich information. However, there exists a large amount of information redundancy among adjacent bands. In this study, a spatial–spectral combination method for hyperspectral band selection (SSCBS) is proposed to reduce information redundancy. First, the hyperspectral image is automatically divided into subspaces. Seven algorithms classified as four types are executed and compared. The means algorithm is the most suitable for subspace division of the input hyperspectral image, with the calculation being the fastest. Then, for each subspace, the spatial–spectral combination method is adopted to select the best band. The band with the maximum information and more prominent characteristics between the adjacent bands is selected. The parameters of Euclidean distance and spectral angle parameters are used to measure the intraclass correlation and interclass spectral specificity, respectively. Weight coefficient quantifying the intrinsic spatial–spectral relationship of pixels are constructed, and then the optimal bands are selected by a combination of the weight coefficients and the information entropy. Moreover, an automatic method is proposed in this paper to provide an appropriate number of band sets, which is out of consideration for existing research. The experimental results show, as compared to other competing methods, that the SSCBS approach has the highest classification accuracy on the three benchmark datasets and takes less computation time. These demonstrate that the proposed SSCBS achieves satisfactory performance against state-of-the-art algorithms.