Highly monodisperse polystyrene (PS) nanospheres were fabricated by surfactant-free emulsion polymerization in water using styrene, 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AIBA), and poly(vinyl pyrrolidone) (PVP). The size and distribution of the PS nanospheres were systematically investigated in terms of initiator concentration, stabilizer concentration, reaction temperature, reaction time, and reactant concentration. With increasing AIBA initiator concentration, PS particle sizes are raised proportionally, and can be controlled from 120 to 380 nm. Particle sizes were reduced with increasing PVP concentration. This decrease occurs because a high PVP concentration leads to a large number of primary nuclei in the early stage of polymerization. When the reaction temperature increased, the sizes of the PS particles decrease slightly. The particles grew quickly during the initial reaction stage (1-3 h) and the growth rate became steady-state after 6 h. The PS sizes approximately doubled when the reactant (styrene, PVP, azo-initiator) concentrations were increased by a factor of eight.