Abstract-We studied the practical limitations of a linearly transformed invisibility cloak due to the loss and discretization. We found that in order for the cloaking applications to be practically useful, for example, to reduce the scattering by two orders, the maximum loss tangent allowed in the cloak needs to be of or within the order of 0.01, which also limits the radius of a concealed object to be roughly within one wavelength. For a large cloak, if its size is increased by one order, the maximum allowed loss tangent needs to be reduced by one order accordingly. For discretization, we studied both lossless and lossy cases and found that a little loss will expedite the convergence of scattering with increase of the number of layers. Insufficient layers may increase the scattering and thus make the object more visible instead of invisible.