Beijing Capital International Airport (BCIA) has suffered from uneven land subsidence since 1935, which affects the smoothness of airport runways and seriously threatens the safety of aircrafts. In this paper, a spaceborne interferometric synthetic aperture radar (InSAR) with high-resolution Cosmo-SkyMed SAR data was utilized at BCIA for the first time to diagnose the subsidence hazard. The results show that subsidence is progressing at BCIA at a maximum rate of 50 mm/year, which is mainly distributed in the northwest side of the airport. It was found that the Shunyi-Liangxiang fault directly traverses Runway2 and Runway3 and causes uneven subsidence, controlling the spatial subsidence pattern to some degree. Four driving factors of subsidence were investigated, namely: the over-exploitation of groundwater, active faults, compressible soil thickness, and aquifer types. For the future sustainable development of BCIA, the influence of Beijing new airport and Beijing Daxing International Airport (BDIA), was analyzed and predicted. It is necessary to take relevant measures to control the uneven subsidence during the initial operation of BDIA and conduct long-term monitoring to ensure the regular safe operation of BCIA. This case demonstrates a remote sensing method of diagnosing the subsidence hazard with high accuracy and non-contact, providing a reliable alternative for the geohazard diagnosis of key infrastructures in the future.Significant uneven subsidence or fissure would cause the risk of major disruption. It could particularly pose a great threat to the safety of aircrafts during takeoff, landing and taxing. Monitoring and controlling the subsidence of runways are of great significant to ensure the safe operation of the whole airport and avoid the potential extensive loss of life and property.During the last three decades, interferometric synthetic aperture radar (InSAR) technology has developed into a powerful tool, providing high-resolution, day-and-night, weather-independent wide-coverage and high-accuracy measurements of the earth surface [6]. It has been widely used in various applications, such as the displacements monitoring of city subsidence [7][8][9][10][11][12], important infrastructures [13][14][15][16] and landslides geohazards [17][18][19][20][21]. Compared to traditional geodetic measuring methods-e.g., leveling and global positioning system (GPS)-InSAR measurements do not need any on-site installation and power supply, thus they will not have any impact on the regular operation of the airport. InSAR has been used in several airport subsidence monitoring, such as in Chek Lap Kok Airport [22]. The subsidence in BCIA has been monitored using InSAR technology, which has drawn wide attention from the government and relevant scholars. Gao et al. used multi-temporal InSAR technology to investigate the deformation in BCIA with Envisat ASAR images (from 2003 to 2013) [23] and with TerraSAR-X data (from 2010 to 2017) [24]. Continuous monitoring covering BCIA is in high demand in order to investigate the...