Drugs of abuse, including cocaine, amphetamine (AMPH), and heroin, elevate extracellular dopamine (DA) levels in the brain, thereby altering the activity͞plasticity of reward circuits and precipitating addiction. The physiological release of DA occurs through the calcium-dependent fusion of a synaptic vesicle with the plasma membrane. Extracellular DA is cleared by uptake through the Na ؉ ͞Cl ؊ -dependent DA transporter (DAT). In contrast, the substrate AMPH induces nonvesicular release of DA mediated by DAT. Extracellular AMPH is generally believed to trigger DA efflux through DAT by facilitating exchange for cytosolic DA. Here, in outside-out patches from heterologous cells stably expressing DAT or from dopaminergic neurons, by using ionic conditions in the patch pipette that mimic those produced by AMPH stimulation, we report that AMPH causes DAT-mediated DA efflux by two independent mechanisms: (i) a slow process consistent with an exchange mechanism and (ii) a process that results in rapid (millisecond) bursts of DA efflux through a channel-like mode of DAT. Because channel-like release of DA induced by AMPH is rapid and contains a large number of DA molecules, with a single burst of DA on par with a quantum of DA from exocytotic release of a vesicle, this burst mode of release may play a role in the synaptic actions and psychostimulant properties of AMPH and related compounds. Unlike AMPH, the endogenous substrate DA, when present on both sides of the plasma membrane, inhibits this channel-like activity, thereby suggesting that the DAT channel-like mode cannot accumulate DA against a concentration gradient.patch clamp ͉ amperometry D opamine (DA) transporter (DAT) is a member of a gene family that includes norepinephrine transporter (NET), serotonin transporter (SERT), and ␥-aminobutyric acid transporter 1 (GAT-1) (1-3). These neurotransmitter transporters are thought to play an important role in the reuptake (3, 4) and release (5, 6) of neurotransmitters. Their mechanism of transport is often described by using an alternating access model (7). In this model, the binding of cargo (DA, Na ϩ , and Cl Ϫ ) to an extracellularly oriented transporter induces a conformational rearrangement to an intracellularly oriented transporter from which the cargo is released into the cytosol, thereby completing the transport process. Consistent with this model, the recent crystal structure of the nonhomologous secondary transporter lactose permease (8) showed the transporter in what was inferred to be the ''inward-facing state'' with substrate bound within a cytoplasmic vestibule and no access route to the ''extracellular'' space.In the case of DAT, DA transport generates an electrical current because of the net movement of positive charge into the cell (9). DA efflux induced by the psychostimulant amphetamine (AMPH) is believed to result from the ability of AMPH to reverse this inward transport process, in that the inward transport of AMPH by DAT increases the number of ''inward-facing'' transporter binding sites and there...