Synaptic release of dopamine in the nucleus accumbens of the intact rat brain elicited by a single electrical impulse applied to ascending dopaminergic fibers results in extracellular concentrations sufficient to bind the known dopamine receptors. The dopamine concentration observed after four rapid, sequential pulses is exactly four times greater and is unaffected by pharmacological antagonism of dopamine uptake and receptor sites at supramaximal concentrations. Thus, dopamine efflux from the synaptic cleft is not restricted by binding to intrasynaptic proteins on the time scale of the measurements (50–100 msec). The extracellular concentration, as a result of a single stimulus pulse, is 0.25 microM and is rapidly removed by extrasynaptic uptake. This maximal, transient concentration of dopamine is 60 times higher than steady-state concentrations reported previously using dialysis techniques, illustrating that dopamine extracellular concentrations are spatially and temporally heterogenous. In contrast to ACh transmission at the neuromuscular junction, the dopamine synapse in the telencephalon is designed for the effective efflux of dopamine from the synaptic cleft to the extrasynaptic compartment during neurotransmission.
The time course of extrusion of the vesicular contents during exocytosis has been examined at adrenal medullary cells with carbon-fiber microelectrodes. Two electrochemical techniques were used: cyclic voltammetry and amperometry. Spikes obtained by amperometry had a faster time course than those measured by cyclic voltammetry, consistent with the different concentration profiles established by each technique. However, the experimental data obtained with both techniques were temporally broadened with respect to dispersion of an instantaneous point source by diffusion. Measurements with the electrode firmly pressed against the cell surface established that the temporal broadening is a result of a rate-limiting kinetic step associated with extrusion of the vesicular contents at the cell surface. The data do not support a rate-limiting process due to restricted efflux from a small pore. When combined with previous results, the data suggest that the rate-limiting step for chemical secretion from adrenal medullary cells during exocytosis is the dissociation of catecholamines from the vesicular matrix at the surface of the cell.
Supplementary Material Available: Tables of average molecularintensities for each camera distance at each temperature, symmetry coordinates, force constants, observed and calculated wavenumbers, and correlation matrices for all refined parameters at the lowest temperature experiments and figures of total intensities with backgrounds for experiments at 388 K and 673 K (DBTF) and 393 K and 473 K (DITF) (16 pages). Ordering information is given on any current masthead page.
Cyclic voltammetry of Nafion-coated, carbon-fiber electrodes is used to detect trace concentrations of dopamine, both in a flow injection apparatus and in the brain of an anaesthetized rat. To improve signal-to-noise ratios, the sources of noise during cyclic voltammetry have been determined and strategies have been developed to decrease the noise. With the potentiostat employed, the measured noise is comparable to that expected for Johnson noise from the feedback resistor of the current transducer. Additional noise arises from the waveform generator employed and, in some cases, line noise. Line noise is discriminated against by starting each cyclic voltammogram either in phase or 180 degrees out of phase with the line frequency. When used in vivo, additional noise also arises from the physiological activity of the animal. Detection limits are found to closely correspond to those predicted on the basis of simulation of the voltammetric shape and the measured noise. Detection limits are improved by the use of appropriate analog and digital filtering, ensemble averaging, and appropriate timing of repetitive cyclic voltammograms. The combined use of these techniques enables the in vivo detection of approximately 100 nM of dopamine with a signal-to-noise ratio of 25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.