The TRIP-Br1/p34 SEI-1 family proteins participate in cell cycle progression by coactivating E2F1-or p53-dependent transcriptional activation. Here, we report the identification of human CDCA4 (also know as SEI-3/Hepp) as a novel target gene of transcription factor E2F and as a repressor of E2F-dependent transcriptional activation. Analysis of CDCA4 promoter constructs showed that an E2F-responsive sequence in the vicinity of the transcription initiation site is necessary for the E2F1-4-induced activation of CDCA4 gene transcription. Chromatin immunoprecipitation analysis demonstrated that E2F1 and E2F4 bound to an E2F-responsive sequence of the human CDCA4 gene. Like TRIP-Br1/p34 SEI-1 and TRIP-Br2 (SEI-2), the transactivation domain of CDCA4 was mapped within C-terminal acidic region 175-241. The transactivation function of the CDCA4 protein was inhibited by E2F1-4 and DP2, but not by E2F5-8. Inhibition of CDCA4 transactivation activity by E2F1 partially interfered with retinoblastoma protein overexpression. Conversely, CDCA4 suppressed E2F1-3-induced reporter activity. CDCA4 (but not acidic region-deleted CDCA4) suppressed E2F1-regulated gene promoter activity. These findings suggest that the CDCA4 protein functions as a suppressor at the E2F-responsive promoter. Small interfering RNA-mediated knockdown of CDCA4 expression in cancer cells resulted in upregulation of cell growth rates and DNA synthesis. The CDCA4 protein was detected in several human cells and was induced as cells entered the G 1 /S phase of the cell cycle. Taken together, our results suggest that CDCA4 participates in the regulation of cell proliferation, mainly through the E2F/retinoblastoma protein pathway.