Pseudomonas aeruginosa and Acinetobacter baumannii are significant opportunistic pathogens in hospitals and are resistant to most antibiotics. Multidrug-resistant P. aeruginosa (MDRPA) and A. baumannii (MDRAB) cause severe human nosocomial infections and are more difficult to treat than methicillin-resistant Staphylococcus aureus (MRSA). Bifidobacteria are among of the most beneficial probiotics and have been widely studied for their antimicrobial activities. The present study explored the antimicrobial activity of Bifidobacterium sp. isolated from healthy Koreans against MDRPA and MDRAB. The antimicrobial activity of the isolates against MDRPA and MDRAB, which are resistant to ciprofloxacin, tobramycin, gentamicin, meropenem, and ceftazidime, was determined by modified broth microdilution methods using absorbance. Among all tested bifidobacteria isolates (nine B. adolescentis, three B. longum, and two B. pseudocatenulatum), the culture supernatant of B. pseudocatenulatum SPM1309 showed a strong growth inhibitory effect against MDRPA and MDRAB. No change in the turbidity of the mixture was observed during incubation, and its inhibitory effect occurred through bacteriostastic action. Moreover, the antibacterial activity was observed in the fraction with molecular weights <10 kDa of bifidobacteria culture supernatant, and the active fraction was heat-stable because it maintained its activity when heated at 70℃ for 10 min. The results suggest that this Bifidobacterium strain could have potential applications for alternative therapy in MDRPA and MDRAB infections.