In this work we used a combination of different techniques to investigate the adsorption properties of curcumin by zeolite type A for potential use as an anticancer drug carrier. Curcumin is a natural water-insoluble drug that has attracted great attention in recent years due to its potential anticancer effect in suppressing many types of cancers, while showing a synergistic antitumor effect with other anticancer agents. However, curcumin is poorly soluble in aqueous solutions leading to the application of high drug dosage in oral formulations. Zeolites, inorganic crystalline aluminosilicates with porous structure on the nano- and micro-scale and high internal surface area, can be useful as pharmaceutical carrier systems to encapsulate drugs with intrinsic low aqueous solubility and improve their dissolution. Here, we explore the use of zeolite type A for encapsulation of curcumin, and we investigate its surface properties and morphology, before and after loading of the anticancer agent, using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and UV-vis spectroscopy. Results are used to assess the loading efficiency of zeolite type A towards curcumin and its structural stability after loading.