Chlorine photolysis is an advanced oxidation process that relies on the combination of direct chlorination by free available chlorine, direct photolysis, and reactive oxidants to transform contaminants. In waters that contain bromide, free available bromine and reactive bromine species can also form. However, little is known about the underlying mechanisms or formation potential of disinfection byproducts (DBPs) under these conditions. We investigated reactive oxidant generation and DBP formation under dark conditions, chlorine photolysis, and radicalquenched chorine photolysis with variable chlorine (0−10 mg-Cl 2 / L) and bromide (0−2,000 μg/L) concentrations, as well as with free available bromine. Probe loss rates and ozone concentrations increase with chlorine concentration and are minimally impacted by bromide. Radical-mediated processes partially contribute to the formation targeted DBPs (i.e., trihalomethanes, haloacetic acids, haloacetonitriles, chlorate, and bromate), which increase with increasing chlorine concentration. Chlorinated novel DBPs detected by high-resolution mass spectrometry are attributable to a combination of dark chlorination, direct halogenation by reactive chlorine species, and transformation of precursors, whereas novel brominated DBPs are primarily attributable to dark bromination of electron-rich formulas. The formation of targeted and novel DBPs during chlorine photolysis in waters with elevated bromide may limit treatment applications.