Laboratory studies have made unprecedented progress in understanding circadian physiology. Quantifying circadian rhythms outside of laboratory settings is necessary to translate these findings into real-world clinical practice. Wearables have been considered promising way to measure these rhythms. However, their limited validation remains an open problem. One major barrier to implementing large-scale validation studies is the lack of reliable and efficient methods for circadian assessment from wearable data. Here, we propose an approximation-based least-squares method to extract underlying circadian rhythms from wearable measurements. Its computational cost is ∼ 300-fold lower than that of previous work, enabling its implementation in smartphones with low computing power. We test it on two large-scale real-world wearable datasets:
∼
600
days
of body temperature data from cancer patients and ∼ 184 000 days of heart rate and activity data collected from the ‘Social Rhythms’ mobile application. This shows successful extraction of real-world dynamics of circadian rhythms. We also identify a reasonable harmonic model to analyse wearable data. Lastly, we show our method has broad applicability in circadian studies by embedding it into a Kalman filter that infers the state space of the molecular clocks in tissues. Our approach facilitates the translation of scientific advances in circadian fields into actual improvements in health.