Alzheimer's disease (AD) and Parkinson's disease (PD) constitute the main causes of dementia worldwide and the major health threats to elderly people. Moreover, with the ageing of the global population, neurodegenerative disorders, such as AD and PD, constitute a major public health issue. Regrettably, significant advances regarding the molecular aspects of these diseases have not yet been translated into real improvements in AD/PD therapeutics. In this regard, both AD and PD are highly complex and involve critical molecular events governing the establishment and progression of each disease. Moreover, molecular alterations trigger pathophysiological cascades involving the immune/inflammatory response, oxidative stress, and mitochondrial dysfunction, among others, ultimately leading to neuronal death. Similarly, these alterations also affect glial cells and brain vasculature, which contribute directly to the progression of these disorders. Accordingly, the present paper aims to summarise the main molecular elements related to AD and PD as well as the pathophysiological implications of such alterations to improve our understanding of the cellular and molecular responses observed during neurodegeneration. We believe that providing a more comprehensive view of the pathophysiological cascade, including neurons and glial cells, might prompt researchers to widen neurodegenerative disorder research and therapeutic approaches.