We examined the biosynthesis and post-translational processing of the brain-derived neurotrophic factor precursor (pro-BDNF) in cells infected with a pro-BDNFencoding vaccinia virus. Metabolic labeling, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis reveal that pro-BDNF is generated as a 32-kDa precursor that is N-glycosylated and glycosulfated on a site, within the pro-domain. Some pro-BDNF is released extracellularly and is biologically active as demonstrated by its ability to mediate TrkB phosphorylation. The precursor undergoes N-terminal cleavage within the trans-Golgi network and/or immature secretory vesicles to generate mature BDNF (14 kDa). Small amounts of a 28-kDa protein that is immunoprecipitated with BDNF antibodies is also evident. This protein is generated in the endoplasmic reticulum through N-terminal cleavage of pro-BDNF at the Arg-Gly-Leu-Thr 57 -2-SerLeu site. Cleavage is abolished when Arg 54 is changed to Ala (R54A) by in vitro mutagenesis. Blocking generation of 28-kDa BDNF has no effect on the level of mature BDNF and blocking generation of mature BDNF with ␣ 1 -PDX, an inhibitor of furin-like enzymes, does not lead to accumulation of the 28-kDa form. These data suggest that 28-kDa pro-BDNF is not an obligatory intermediate in the formation of the 14-kDa form in the constitutive secretory pathway.
Brain-derived neurotrophic factor (BDNF)1 along with nerve growth factor (NGF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) are members of the neurotrophin family of trophic factors (1). The neurotrophins play essential roles in the development, survival, and function of a wide range of neurons in both the peripheral and central nervous systems.The neurotrophins have a number of shared characteristics, including similar molecular weights (13.2-15.9 kDa), isoelectric points (in the range of 9 -10), and ϳ50% identity in primary structure. They exist in solution as noncovalently bound dimers. Six cysteine residues conserved in the same relative positions give rise to three intra-chain disulfide bonds (2, 3). The neurotrophins interact with two cell surface receptors, the low affinity P75 receptor (4) and the Trk family of high affinity tyrosine kinase receptors (5). NGF preferentially binds TrkA, BDNF and NT4/5 bind TrkB, and NT-3 binds TrkC (and TrkA to a lesser extent).Sequence data predict that mature neurotrophins are generated through the proteolytic processing of higher molecular weight precursors (31-35 kDa), a process that has been extensively studied with respect to the production of NGF (6, 7). Almost nothing is known, however, about the biosynthesis and post-translational processing of the other members of the neurotrophin family. Recent data from our laboratory show that cells with a regulated secretory pathway, including central nervous system neurons, release mature (i.e. fully processed) NGF (8) and NT-3 (9) via the constitutive secretory pathway, whereas mature BDNF is packaged in vesicles and released through the regulated pathway (8). Furthermore, BDNF i...