Robot swarms herald the ability to solve complex tasks using a large collection of simple devices. However, engineering a robotic swarm is far from trivial, with a major hurdle being the definition of the control laws leading to the desired globally coordinated behavior. Communication is a key element for coordination and it is considered one of the current most important challenges for swarm robotics. In this paper, we study the problem of maintaining robust swarm connectivity while performing a coverage task based on the Voronoi tessellation of an area of interest. We implement our methodology in a team of eight Khepera IV robots. With the assumptions that robots have a limited sensing and communication range-and cannot rely on centralized processing-we propose a tri-objective control law that outperforms other simpler strategies (e.g. a potentialbased coverage) in terms of network connectivity, robustness to failure, and area coverage.