Flexible threadlike supercapacitors with improved performance are needed for many wearable electronics applications. Here, we report a high performance flexible asymmetric all-solid-state threadlike supercapacitor with a NiCo Se positive electrode and a NiCo O @PPy (PPy: polypyrrole) negative electrode. The as-prepared electrodes display outstanding volume specific capacitance (14.2 F cm ) and excellent cycling performance (94 % retention after 5000 cycles at 0.6 mA) owing to their nanosheet and nanosphere structures. The asymmetric all-solid-state threadlike supercapacitor expanded the stability voltage window from 0-1.0 V to 0-1.7 V and exhibits high volume energy density (5.18 mWh cm ) and superior flexibility under different bending conditions. This study provides a scalable method for fabricating high performance flexible supercapacitors from easily available materials for use in wearable and portable electronics.
Threadlike linear supercapacitors have demonstrated high potential for constructing fabrics to power electronic textiles (eTextiles). To improve the cyclic electrochemical performance and to produce power fabrics large enough for practical applications, a current collector has been introduced into the linear supercapcitors to transport charges produced by active materials along the length of the supercapacitor with high efficiency. Here, we first screened six candidate metal filaments (Pt, Au, Ag, AuAg, PtCu, and Cu) as current collectors for carbon nanotube (CNT) yarn-based linear supercapacitors. Although all of the metal filaments significantly improved the electrochemical performance of the linear supercapacitor, two supercapacitors constructed from Cu and PtCu filaments, respectively, demonstrate far better electrochemical performance than the other four supercapacitors. Further investigation shows that the surfaces of the two Cu-containing filaments are oxidized by the surrounding polymer electrolyte in the electrode. While the unoxidized core of the Cu-containing filaments remains highly conductive and functions as a current collector, the resulting CuO on the surface is an electrochemically active material. The linear supercapacitor architecture incorporating dual active materials CNT + Cu extends the potential window from 1.0 to 1.4 V, leading to significant improvement to the energy density and power density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.