Face recognition has been rapidly developed and widely used. However, there is still considerable uncertainty in the computational intelligence based on human-centric visual understanding. Emerging challenges for face recognition are resulted from information loss. This study aims to tackle these challenges with a broad learning system (BLS). We integrated two models, IR 3 C with BLS and IR 3 C with a triplet loss, to control the learning process. In our experiments, we used different strategies to generate more challenging datasets and analyzed the competitiveness, sensitivity, and practicability of the proposed two models. In the model of IR 3 C with BLS, the recognition rates for the four challenging strategies are all 100%. In the model of IR 3 C with a triplet loss, the recognition rates are 94.61%, 94.61%, 96.95%, 96.23%, respectively. The experiment results indicate that the proposed two models can achieve a good performance in tackling the considered information loss challenges from face recognition.