Networked optical wireless communication, also denoted as LiFi, is expected to play an important role in so-called smart hospitals. In this paper, we present the first experimental study of LiFi in an operating room at Motol University Hospital in Prague, Czech Republic. First, we perform one-to-one measurements using an optical transmitter (Tx) and receiver (Rx) and observe that channels with a free LOS provide sufficient signal strength for mobile communication inside the operating room. Then we combine the individual LOS links into a multiple-input multiple-output (MIMO) link using four distributed transmitters representing a wireless infrastructure, and six distributed receivers representing medical devices. In this configuration, at least two strong singular values of the MIMO channel matrix are observed which allow spatial multiplexing. By appropriately clustering the transmitters and selecting the users, mobile devices can be served in parallel. For data transmission, several multiplexing schemes such as time-division multiple access (TDMA) with one and two best links, TDMA with spatial reuse, space-division multiple access (SDMA) with two best links with and without zero forcing (ZF) are considered. Results show that SDMA with ZF increases the data rate by 2.7 times compared to baseline TDMA, resulting in a total data rate of 600 Mbit/s.