Precise position information is considered as the main enabler for the implementation of smart manufacturing systems in Industry 4.0. In this article, a time-of-flight based indoor positioning system for LiFi is presented based on the ITU -T recommendation G.9991. Our objective is to realize positioning by reusing already existing functions of the LiFi communication protocol which has been adopted by several vendors. Our positioning algorithm is based on a coarse timing measurement using the frame synchronization preamble, similar to the ranging, and a fine timing measurement using the channel estimation preamble. This approach works in various environments and it requires neither knowledge about the beam characteristics of transmitters and receivers nor the use of fingerprinting. The new algorithm is validated through both, simulations and experiments. Results in an 1m × 1m × 2m area indicate that G.9991-based positioning can reach an average distance error of a few centimeters in three dimension. Considering the common use of lighting in indoor environments and the availability of a mature optical wireless communication system using G.9991, the proposed LiFi positioning is a promising new feature that can be added to the existing protocols and enhance the capabilities of smart lighting systems further for the benefit of Industry 4.0.
We present a concept for networked optical wireless communications, also denoted as LiFi, to meet the requirements of industrial wireless applications. These are primarily mobility support with moderate data rates per device, reliable real-time communication and integrated positioning. We describe a distributed multiuser multiple-input multiple-output architecture, serving mobile devices via an optical wireless infrastructure. The system consists of a central unit, being connected to a number of distributed optical frontends covering a larger area. Our main contribution is a medium access control protocol based on spacedivision multiple access. Evaluation results demonstrate the advantages of joint transmission from adjacent optical frontends and the dynamic switching between spatial diversity and multiplexing. The relevance of spatial multiplexing becomes obvious in channel measurements in an indoor scenario. Moreover, we highlight a low-power physical layer based on onoff-keying for battery-powered mobile devices. Our architecture can easily integrate positioning by simultaneously measuring the time-of-flight between multiple optical frontends and the mobile device. We highlight the use of plastic optical fiber as an analog fronthaul technology and discuss the integration with other networks. The main functions described in this paper will be supported by the upcoming IEEE Std. 802.15.13.
Recent experimental works have demonstrated the feasibility of the visible light based vehicular communications (VVLC) in intelligent transportation systems (ITS). However, in many respects, this technology is in its infancy and requires further research efforts in several areas. This work presents a flexible network architecture named flexible light (Flight), which is designed for VLC to tackle existing mobility challenges in the network environment. Flight proposes a low-latency handover system that decreases the handover delays to a few tens and hundreds of milliseconds. By means of experiments, we emulate and evaluate indoor mobile network scenarios using only VLC technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.