An automated design synthesis method is developed to design an airfoil with a reconfigurable shape, which can change from one type of geometry to another. A design synthesis method using unit truss approach and particle swarm optimization is presented. In the unit truss approach, unit truss is used as a new unit cell for mechanics analysis of cellular structures, including lightweight structures and compliant mechanisms. Using unit truss approach, axial forces, bending, torsion, nonlinearity, and buckling in structures can be considered. It provides good analysis accuracy and computational efficiency. A synthesis method using unit truss approach integrated with particle swarm optimization is developed to systematically design adaptive cellular structures, in particular, compliant mechanisms discussed in this paper. As an example study, the authors realize the design synthesis of a compliant mechanism that enables an entire closed-loop airfoil profile to change shape from NACA 23015 to FX60-126 for the desired morphing wing. The nonlinear behavior of compliant mechanisms under large deformation is considered. The resulting design is validated by testing its robustness and considering nonlinearity.